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Abstract—In this paper we develop a framework for user
association in infrastructure-based wireless networks, specifically
focused on flow-level cell load balancing under spatially inho-
mogeneous traffic distributions. Our work encompasses several
different user association policies: rate-optimal, throughput-
optimal, delay-optimal, and load-equalizing, which we collectively
denote α-optimal user association. We prove that the optimal
load vector ρ∗ that minimizes a generalized system performance
function is the fixed point of a certain mapping. Based on
this mapping we propose and analyze an iterative distributed
user association policy that adapts to spatial traffic loadsand
converges to a globally optimal allocation.

I. I NTRODUCTION

Fourth generation wireless cellular standards such as
IEEE802.16m WiMAX2 and LTE-Advanced are designed to
support broadband data services (in addition to voice) so as
to meet growing demands for connectivity, e.g., file transfers
and web browsing, on mobile platforms [1], [2]. One of the
important problems in multi-cell data networks is properly
associating mobile terminals (MTs) with serving base stations
(BSs); this is usually referred to as theuser association prob-
lem. In selecting the serving BS, two metrics - instantaneous
achievable rate at the physical layer and cell load - should
be considered. Since the achievable rate is computed from
the received signal-to-interference-plus-noise ratio (SINR), the
simplest (and thus widely accepted) rule is to choose the BS
that gives the strongest downlink pilot signal. However, this
rule is naive in the sense that it does not consider either inter-
cell interference or cell load balancing.

There have been many efforts in the literature towards devel-
oping user association rules considering interference avoidance
and/or cell load balancing [3]–[13]. To avoid interferencewhen
frequency is universally reused and inter-cell interference is
severe,centralizedapproaches have been considered [5], [8],
[10], [11]. The basic idea is to schedule users across cells
so that they do not severely interfere with each other. This
is called inter-cell coordinated scheduling. Earlier workon
load balancing also mostly assumed a centralized controller
that governs the BSs and the MTs with access to all the
necessary information [3], [6], [7], [9], [13]. However, central-
ized approaches, for either interference avoidance and/orload
balancing, may require excessive computational complexity
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and message overhead, which increase exponentially in the
size of the network. Such centralized functionality is usually
implemented in a server deep in the core network, which
only allows slow adaptation at relatively long time scales.To
avoid relying on a centralized controller, current systemsare
usually based onfractional frequency reuseor interference
randomization [1], [2]. Distributed cell load balancing is
also being considered as a basic requirement in upcoming
standards. For example, IEEE 802.16m WiMAX2 recently
included parameters such as cell load and cell type in the
system information broadcast [1], [14].

In this paper we investigatedistributed user association
policies. We will not consider interference avoidance that
requires inter-cell coordinated scheduling. So, our approach
is reasonable when fractional frequency reuse or interference
randomization are being used so that inter-cell interference can
be roughly considered as static noise. We focus on developing
a theory and algorithms for user association that adapt to
spatially inhomogeneoustraffic. We consider stochastic traffic
loads where new file transfers, or equivalentlyflows, are
initiated at random and leave the system after being served –
this is sometimes referred to asflow-level dynamics[5], [15].

Interestingly, even though user association in a dynamic
setting can be viewed as a routing problem among queues,
it is still not well understood; most work to date, is ad hoc
in nature, and does not address dynamic systems [3], [4], [7],
[10], [13], [16], [17]. The work in [5], [6], [8] explores flow-
level dynamics for load balancing, but assumes a centralized
controller. In particular none of these efforts fully explore the
role of load balancing under spatially inhomogeneous traffic
distributions.

One of the main challenges in developing a distributed user
association policy is achieving global performance optimum
without relying on a centralized controller, and doing so to
track changes in traffic distributions; for example, day and
night have quite different spatial traffic distributions asmay
traffic on an hourly (or faster timescale) basis. Our proposed
mechanism, denotedα-optimal user association, effectively
overcomes these challenges.

Contributions. We highlight the contributions of this paper
as follows. First, we provide a theoretical framework for user
association, specifically focused on load balancing under spa-
tially inhomogeneous traffic distributions in an infrastructure-
based wireless network. We formulate the user association
problem as a convex optimization problem. Then we show



a fixed point optimality condition characterizing the spatial
partitions (cell coverage areas) associated with minimizing a
general system-level performance function. The optimal spatial
partition is shown to be unique up to a set of traffic measure
zero – this will be explained in the sequel. The optimality
condition reveals many interesting facts, e.g. : cell loadsare
not interchangeable, andbalancing loads to minimize delay
does not implyequalizing loads at the BSs; Voronoi cells
need not be delay optimal even if the traffic loads are spatially
homogeneous; and cell coverage areas need not be contiguous,
i.e., can be fragmented.

Second, we present a distributed algorithm and prove its
convergence to a global optimum irrespective of the initialcon-
dition. Our algorithm could in principle track slowly varying
traffic loads. It is also very simple and easily implementable;
one need only implement a simple greedy behavior by MTs to
achieve a global optimum. The proposed algorithm supports
a family of load balancing objectives asα ranges from 0 to
∞: rate-optimal (α = 0), throughput-optimal (α ≥ 1), delay-
optimal (α = 2), and equalizing BS loads (α = ∞). Our work
is general and applicable to various scenarios. For example,
our model for achievable rate at the physical layer can capture
shadowing. We do not assume the Tx power of BSs are the
same, so our work is also applicable to heterogeneous BS
deployments such as macro, micro, pico and even femto cells.
Finally, our user association rule can easily address handoffs
[14].

II. SYSTEM MODEL

A. Assumptions

We consider an infrastructure based wireless communication
system with multiple base stations. Target systems could be,
but are not limited to, WiMAX2 or 3GPP-LTE. For simplicity,
we focus on downlink communications but our method is also
applicable to the uplink. We assume that other cell interference
is static, and can be considered as noise [4], [10], [13]. We
consider a regionL ∈ R

2 which is served by a set of base
stationsB. Let x ∈ L denote a location andi ∈ B be a
BS index. We assume that file transfer requests follow an
inhomogeneous Poisson point process with arrival rate per unit
areaλ(x) and file sizes which are independently distributed
with mean1/µ(x) at locationx ∈ L, so the traffic load density
is defined byγ(x) := λ(x)

µ(x) ; we assumeγ(x) < ∞ for x ∈ L.
This captures spatial traffic variability. For example, a hot spot
can be characterized by a high arrival rate and/or possibly large
file sizes.

Definition 1 (traffic load measure):We define the traffic
load measure, m(·), of a Borel setG asm(G) =

∫

G
γ(x)dx.

Assumption 2.1 (capacity function):We assume the physi-
cal capacity each BSi ∈ B can deliver to locationx, ci(x), is
a Borel measurable function and for anyη > 0 and i, j ∈ B,
the set

Dij(η) = {x ∈ L|ci(x)/cj(x) = η} (1)

has traffic load measure zero, i.e.,m(Dij(η)) = 0. Also to
avoid unnecessary technicalities we assumeci(x) > 0 for all
i ∈ B andx ∈ L.

Fig. 1. Flow-level queueing model for user association problem.

As will be seen in the sequel this implies that cell ‘bound-
aries’ have zero traffic load measure. Note this model allows
for a fairly general butdeterministiccapacity function.

Remark 2.1:Whenci(x) is discrete valued,Dij(η) may not
have traffic load measure zero, sonon-trivial tie breaking rules
are necessary.

For simplicity, we use Shannon capacity to model the
transmission rate to a user, i.e.,

ci(x) = log2(1 + SINRi(x)) (2)

whereSINRi(x) is the received signal to interference plus
noise ratio at locationx for the signal from BSi. Since
we assumed that interference is randomized and/or fractional
frequency reuse is used to mitigate interference, the sum of
total interference power seen by the MT can be simply treated
as static interference, i.e., another Gaussian-like noise[1],
[2]. This static inter-cell interference model has also been
adopted in previous load-balancing work [4], [10], [13]. The
SINRi(x) is then given by

SINRi(x) =
Pigi(x)

σ2 + I(x)
, (3)

where Pi denotes the transmission power of BSi, gi(x)
denotes the total channel gain from the BSi to the MT at
locationx, including path loss, shadowing, and other factors
if any. Note, however, that fast fading is not considered here
because the time scale for measuringgi(x) is assumed to be
much larger. Alsoσ2 is noise power andI(x) is theaverage
interference seen by the MT at locationx. It should be noted
thatci(x) is location-dependentbut not necessarily determined
by the distance from the BSi. For example,ci(x) can be very
small in a shadowed area wheregi(x) is very small. Hence,
ci(x) can capture shadowing as well.

The system-load density̺i(x) is then defined by̺ i(x) :=
γ(x)
ci(x)

, which denotes the fraction of time required to deliver
traffic load γ(x) from BS i to location x. We assume that
mini ̺i(x) is finite, i.e., at least one BS has physical capacity
to locationx ∈ L that is not arbitrarily close to zero.

B. Problem formulation

Our problem is to find an optimal user association policy
considering the physical capacity and cell load so as to
minimize the system cost function given below. In doing this
we introduce a routing functionpi(x), which specifies the
probability that a flow at locationx is associated with BSi.



We will see that for our system model and Assumption 2.1 the
optimal routing policy is deterministic, i.e.,p∗i (x) ∈ {0, 1},
which also uniquely determines spatial cell coverage areas
{Li}.

Definition 2 (Feasibility):The setF of feasibleBS loads
ρ = (ρ1, · · · , ρb), is given by

F =
{

ρ | ρi =

∫

L

̺i(x)pi(x)dx, (4)

0 ≤ ρi ≤ 1− ǫ, (5)
∑

i

pi(x) = 1, (6)

0 ≤ pi(x) ≤ 1, ∀i ∈ B and∀x ∈ L
}

, (7)

whereǫ is an arbitrarily small positive constant.
Lemma 1:The feasible setF is convex.

Proof: Consider two load vectorsρ1 ∈ F and ρ2 ∈
F , ρ1 6= ρ2. Then, there exist associatedp1(x) =
(p11(x), · · · , p

1
b(x)) andp2(x) = (p21(x), · · · , p

2
b(x)) such that

ρ1i =
∫

̺i(x)p
1
i (x)dx andρ2i =

∫

̺i(x)p
2
i (x)dx for all i ∈ B.

Now we makeρ as a convex combination ofρ1 andρ2, i.e.,
for θ ∈ [0, 1], ρi = θρ1i + (1− θ)ρ2i =

∫

̺i(x)[θp
1
i (x) + (1−

θ)p2i (x)]dx for all i ∈ B. Let p(x) be the routing probability
associated withρ. Then,pi(x) = θp1i (x) + (1− θ)p2i (x), and
it satisfies (4) to (7). Henceρ is feasible, and soF is a convex
set.

We formulate our problem as a convex optimization as
follows.
Problem 1:

min
ρ

{

φα(ρ) =
∑

i

(1 − ρi)
1−α

α− 1

∣

∣

∣
ρ ∈ F

}

(8)

whereα ≥ 0 is a parameter specifying the desired degree of
load balancing. Whenα = 1 the objective function is defined
as

∑

i log( 1
1−ρi

). Problem 1 is said to be feasible ifF is non-
empty.

C. Motivation for the objective function

Optimizing φα(ρ) for the caseα = 2 corresponds to
minimizing the overall average flow delay in the system if
MTs that are associated with a BS are served by a temporally
fair scheduler. Consider a dynamic system where new flows
(or file transfer requests) arrive randomly (Poisson) into the
system and leave after being served. The dynamics of this
system are captured by aflow-level queuing modelas shown
in Fig. 1 which tracks the arrival and departure processes of
users (or flows, file requests), see e.g., [18]–[20].

LetNi = (Ni(t), t ≥ 0) denote a random process represent-
ing the number of ongoing file transfers served by BSi at time
t. Then, if the system is stationary, the stationary distribution
πi of Ni is identical to that of anM/GI/1 multi-class proces-
sor sharing system [21], and given byπi(ni) = (1 − ρi)ρ

ni

i .
Multi-class reflects the fact that users see different service
rates and file sizes based on their locations. We consider
infinitely many classes because we address this problem in
a continuous spaceL. The average number of flows at BSi
is then simply given byE[Ni] =

ρi

1−ρi

and total number of

flows in L is E[N ] =
∑

i E[Ni] =
∑

i
ρi

1−ρi

. From Little’s
formula, minimizing the average number of flows is equivalent
to minimizing the average delay experienced by atypical
flow. Minimizing

∑

i
ρi

1−ρi

is equivalent to (8) whenα = 2

because
∑

i

(

ρi

1−ρi
+ 1

)

=
∑

i
1

1−ρi
, which does not change

the optimization problem.

D. α-optimal user association

Before discussing the optimal user association and how to
achieve it, we first discuss the implications of this framework.
The solution to Problem 1 gives a unified approach that
allows the mobile terminals to select the BS considering signal
strength (a user point of view) and the degree of load balancing
(the network point of view). Throughout this paper we will see
that if Problem 1 is feasible, the optimal decision made by the
mobile terminal located atx is to join BS i(x) given by

i(x) = argmax
j∈B

cj(x)(1 − ρ∗j )
α, ∀x ∈ L (9)

whereρ∗ = (ρ∗1, · · · , ρ
∗
b) denotes an optimal load vector, i.e.,

solution to Problem 1.
Remark 2.2 (Tie-breaking):A location x ∈ L is called a

cell boundary if a tie ofargmax operation in (9) happens at
x. Based on Assumption 2.1, cell boundaries have traffic load
measure zero; nevertheless, for completenessif a tie happens,
we shall hereafter assume that the MT at such a location
chooses the lower indexed BS.

From (9) the mobile terminal chooses a BS that provides
the highest physical capacity weighted by a power ofBS’s
idle time. By a BS’s idle time we refer to the fraction of time
it is inactive, i.e.,1 − ρi. Depending on the value ofα we
categorizeα-optimal user association policies into four cases.

1) Rate-optimal policy:Whenα = 0, the decision is purely
based on user’s perspective, i.e., based on the physical capacity
only (or SINR), and oblivious of network traffic condition.
In this case one can show thatα-optimal user association
maximizes thearithmeticmean of the BSs’ idle times.

2) Throughput-optimal policy:As α increases, the BS
selection criteria gradually shifts from user’s perspective to
network perspective, andα = 1 is a critical point. This is
becauseφα(ρ) goes to infinity with loads close to 1 only if
α ≥ 1 and ensures a stable behavior. Whenα = 1, it can
be shown that thegeometricmean of the BSs’ idle time is
maximized.

3) Delay-optimal policy:Whenα = 2, average file transfer
delay is minimized as we have seen. In addition, one can show
that theharmonicmean of the BSs’ idle time is maximized.

4) Equalizing-load policy:As α further increases, the rule
is such that more emphasis is placed on the traffic loads rather
than the physical capacity. One can show that asα → ∞, α-
optimal user association minimizes the maximum utilization,
i.e., min-max utilization, and furthermore it equalizes the
utilization of all the BSs.

III. D ISTRIBUTED ITERATION ACHIEVING OPTIMALITY

In this section we propose a distributed adaptive user
association algorithm that achieves the global optimum of



Problem 1 in an iterative manner. The algorithm is simple;
BSs periodically share their time average loads with MTs, and
MTs use this information to make decisions over these periods.
We will show that if spatial loads are temporally stationary,
the load vector eventually converges to the unique solutionof
Problem 1, which in turn determines spatial coverage areas
associated with each BS. However to show convergence we
shall assume the following simplifying assumption.

Assumption 3.1 (Separation of time scales):We shall as-
sume the flow arrival and departure process is very fast relative
to the period on which BSs advertise their loads. In particular,
once the BSs advertise their load vector, prior to the next
update the BSs are able to measure the new steady state loads
associated with MT decisions under the advertised vector.

A. Distributed-decision algorithm

The algorithm involves two parts.
Mobile terminal: At the start of thek-th period MTs receive

ρ(k), e.g., through broadcast control messages from BSs.1

Then, a new flow request for a MT located atx simply
selects the BSi(x) using the deterministic rule given by (9)
whereρ∗ is replaced byρ(k). Let L(k)

i denote the coverage
area of BSi at k-th period. Then, a new spatial partition
P(k) = {L

(k)
1 , · · · ,L

(k)
b } is determined byρ(k) and given by

L
(k)
i =

{

x ∈ L|i = argmax
j

cj(x)
[

1− ρ
(k)
j

]α
}

, ∀i ∈ B. (10)

Base station: During the k-th period BSs measure their
average utilizations. Due to Assumption 3.1, the measured
utilization converges toTi(ρ

(k)) given by

Ti(ρ
(k)) = min

[

∫

L
(k)
i

̺i(x)dx, 1 − ǫ

]

, ∀i ∈ B. (11)

Note that the measured utilization, i.e., average busy fractional
time of the BSi cannot exceed 1. To avoid unnecessary tech-
nicalities we introduce an arbitrarily small positive constantǫ.
It can be shown thatT (ρ) = {Ti(ρ)} is a continuous mapping
defined on[0, 1− ǫ]b to itself.

After T (ρ(k)) is measured, BSs compute and advertise their
next broadcast messageρ(k+1) given by

ρ(k+1) = β(k)ρ(k) + (1− β(k))T (ρ(k)) := S(ρ(k)) (12)

where β(k) ∈ [0, 1) is an exponential-averaging parameter.
It should be noted thatT (ρ(k)) corresponds to the average
loads seen during thek-th period whileρ(k) is an exponential
average ofT (ρ(ℓ)) across periods, i.e.,ℓ = 0, · · · , k − 1 with
some initial loadsρ(0) ∈ F .

B. Fixed point achieves optimality

Note that ifρ(k) converges it must converge to a fixed point
of (12), i.e., a solution to

ρ∗ = T (ρ∗). (13)

Due to the space limitations the proof that (12) converges
is provided in [22]. Below we will show thatT (·) has a

1IEEE 802.16m facilitates this type of message structure [1], [14].

unique fixed pointρ∗ corresponding to the optimal load vector
associated with Problem 1.

Theorem 1:Suppose that Problem 1 is feasible. Then,T
has a unique fixed point which is the optimal solution to
Problem 1. In addition, under Assumption 2.1 this fixed point
determines a unique optimal spatial partitionP∗ up to a set
of traffic measure zero.

Proof: Since T is a continuous mapping defined on
compact set[0, 1 − ǫ]b to itself, by Brouwer’s fixed point
theorem, a solution ofT (ρ∗) = ρ∗ must exist. Now we prove
thatρ∗ is the optimal solution of Problem 1. Sinceφα(ρ) is a
convex function over a convex set, ifρ∗ satisfies the following
condition

〈∇φα(ρ
∗),∆ρ∗〉 ≥ 0 (14)

for all ρ ∈ F where∆ρ∗ = ρ − ρ∗, thenρ∗ is the optimal
solution of Problem 1.

Let p(x) and p∗(x) be the associated routing probabilities
for ρ andρ∗, respectively. From (10), (11) and (13) we have

p∗i (x) = 1
{

i = argmax
j

cj(x)
(

1− ρ∗j
)α

}

, (15)

and then the inner production is computed such as
〈∇φα(ρ

∗),∆ρ∗〉

=
∑

i

1

(1 − ρ∗i )
α
(ρi − ρ∗i )

=
∑

i

∫

L
̺i(x) (pi(x)− p∗i (x)) dx

(1− ρ∗i )
α

=

∫

L

γ(x)

[

∑

i

pi(x)− p∗i (x)

ci(x)(1 − ρ∗i )
α

]

dx. (16)

Note that
∑

i

pi(x)

ci(x)(1 − ρ∗i )
α
≥

∑

i

p∗i (x)

ci(x)(1 − ρ∗i )
α

holds becausep∗i (x) in (15) is an indicator for the maximizer
of cj(x)(1−ρ∗j )

α, for all j ∈ B. Hence,〈∇φα(ρ
∗),∆ρ∗〉 ≥ 0.

Whenα > 0 Problem 1 is strictly convex, andρ∗ should be
unique, and so is the fixed point. Whenα = 0, the optimal
policy selects the BS that gives the highestci(x) without
considering load. HenceT (ρ) is independent of the load vector
ρ and a constant function, which ensures thatρ∗ is unique.

In addition we can show thatρ∗ has a corresponding spatial
partition P∗ = {L∗

i , i ∈ B} which is unique up to a set of
traffic measure zero. Suppose that there are two such partitions
P∗
1 andP∗

2 associated withρ∗, and there exists a setM ⊂ L
with non-zero traffic measure whereP∗

1 and P∗
2 differ, i.e.,

user associations are different. In particular, without loss of
generality onM, underP∗

1 , users at those locations associated
with BS 1, while underP∗

2 they associate with BS 2. It follows
that onM there must be a tie, yet by Assumption 2.1 such
sets have traffic measure zero. This is then a contradiction.It
follows that the induced partitionP∗ is unique except on sets
which have zero traffic measure.

Remark 3.1:Utilizations can also be indirectly estimated
by measuring the average number of flows in the system. For
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Fig. 2. Voronoi cells vs Delay-optimal cells (a–b), and spatial distribution
of conditional average delay (dB scale) in each case.

example in anM/GI/1 processor sharing queue, the average
number of flows is given byE[Ni] =

ρi

1−ρi

, which in turn

yields ρi =
E[Ni]

E[Ni]+1 . Replacingρi =
E[Ni]

E[Ni]+1 into (9) when
α = 1 gives

i(x) = argmax
j

cj(x)

E[Nj ] + 1
. (17)

This rule is a special case ofα-optimal user association
proposed as a heuristic in [4], [10] and [13].

Example 1 (Spatial delay smoothing):This example shows
the BS coverage areas and geographical distribution of average
file transfer delays. Five BSs are randomly placed in 1000m
× 1000m region. As an example of inhomogeneous traffic
loads, a linearly increasing load in the diagonal directionis
considered. The Tx power of all the BSs was normalized to1.
We assume hereafter that the Tx power is 1, unless otherwise
specified, throughout the paper. In addition,ci(x) is computed
using pathloss exponent 3. Fig. 2 (a) shows the partition when
α = 0 (Voronoi cells), and Fig. 2 (b) shows the partition
whenα = 2 (delay-optimal cells). Fig 2 (c) and (d) show the
conditional average file transfer delays (dB scale) atx, which
is given by

E[Di|X = x] =
1

λ(x)

̺i(x)

ρi

ρi
1− ρi

=
1

µ(x)ci(x)(1 − ρi)

in the case of anM/GI/1 multi-class processor sharing
system model. For simplicity, we set1/µ(x) = 1 and show
the average 1-bit transmit time. The benefit of delay-optimal
load balancing is clearly shown in Fig. 2. A slight modification
of the cell coverages significantly improves the delay perfor-
mance, specifically, of the congested cell at the right lower
corner.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed a theoretical (and also practical)
framework for user association problem in wireless networks.
We specifically focused on distributed load balancing under
spatially inhomogeneous traffic distributions and showed the

optimality condition of cell coverage areas that minimizes
generalized system performance function. Interestingly,the
optimal user association policy, i.e., routing of flows to
appropriate BSs is deterministic even though probabilistic
routing is allowed. This deterministic property enables usto
develop a simple distributed-decision algorithm at the MTs,
which is easily implementable and compliant with upcoming
standards, e.g., WiMAX2. Our distributed algorithm converges
to the global optimum and also is robust to changes of traffic
distributions. Our work will be extended to the case where
the system cannot be stabilized due to excessive traffic loads.
Under such heavy traffic regimes, we will propose optimal
admission control policies considering tradeoffs betweentwo
QoS metrics: average delay vs. maintaining a minimum level
of connectivity to users independent of their location.
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